Search results for "Matematika- és számítástudományok"

showing 2 items of 2 documents

Multiplicative loops of 2-dimensional topological quasifields

2015

We determine the algebraic structure of the multiplicative loops for locally compact $2$-dimensional topological connected quasifields. In particular, our attention turns to multiplicative loops which have either a normal subloop of positive dimension or which contain a $1$-dimensional compact subgroup. In the last section we determine explicitly the quasifields which coordinatize locally compact translation planes of dimension $4$ admitting an at least $7$-dimensional Lie group as collineation group.

CollineationAlgebraic structureDimension (graph theory)Topology01 natural sciencesSection (fiber bundle)TermészettudományokFOS: MathematicsCollineation groupLocally compact space0101 mathematicsMatematika- és számítástudományokMathematicsAlgebra and Number TheoryGroup (mathematics)010102 general mathematicsMultiplicative function20N05 22A30 12K99 51A40 57M60Lie groupMathematics - Rings and AlgebrasSections in Lie group010101 applied mathematicsTranslation planes and speadsMultiplicative loops of locally compact quasifieldRings and Algebras (math.RA)Settore MAT/03 - Geometria
researchProduct

The action of a compact Lie group on nilpotent Lie algebras of type {{n,2}}

2015

Abstract We classify finite-dimensional real nilpotent Lie algebras with 2-dimensional central commutator ideals admitting a Lie group of automorphisms isomorphic to SO 2 ⁢ ( ℝ ) ${{\mathrm{SO}}_{2}(\mathbb{R})}$ . This is the first step to extend the class of nilpotent Lie algebras 𝔥 ${{\mathfrak{h}}}$ of type { n , 2 } ${\{n,2\}}$ to solvable Lie algebras in which 𝔥 ${{\mathfrak{h}}}$ has codimension one.

pair of alternating formsPure mathematicsClass (set theory)General MathematicsGroup Theory (math.GR)010103 numerical & computational mathematicsType (model theory)01 natural sciencesMathematics::Group TheoryTermészettudományokLie algebraFOS: MathematicsMatematika- és számítástudományok0101 mathematicsNilpotent Lie algebraMathematicsCommutatorApplied Mathematics010102 general mathematicsLie groupCodimensionAutomorphismNilpotent17B05 17B30 15A63&nbspSettore MAT/03 - GeometriaMathematics - Group TheoryForum Mathematicum
researchProduct